

Digital Twin

An interoperability framework

Dr. Christopher Ganz, Group VP R&D digital lead

Digital Twin

Interpretations of a buzzword in the market

Product lifecycle interpretation	Real-time data access interpretation		
All information available about a piece of equipment can be accessed in a digital twin container:	Real-time information is reflected in digital models and simulation and is available for further analysis:		
 Product documentation 	 Digital object behaves exactly as the real one 		
 Simulation models 	 Forecasts can be made in the simulation environment 		
Lifecycle aspects are more in the focus of Industry 4.0 concepts	Real-time data integration is more related to Industrial Internet		

A digital twin concept that matches customer expectations in all verticals must cover both aspects

Digital twin components in ABB

Examples implementing aspects of digital twin

PLM information used for AR

PLM data is made available for AR applications and matched with the real world object.

RobotStudio

RobotStudio allows commissioning in digital space, programming the 'digital twins'

ABB Aspect Object in 800xA

Digital twin implementation in the 800xA automation platform.

Characteristics of a Digital Twin

What it means

		1) Model	Model that can reflect its data and behavior		Model	
						ID
	σ	2) Data	Available information (real-time or off-line)			Nominal Po
	uire					Function
	Req	3) Uniqueness	1:1 relation to one physical installation		역들구	curr. Speed
	_				ر <u>تا الا</u> معلم ال	curr. Power
		4) Monitor	Access to equipment state			Health
						RUL
	Optional	5) Analytics	Algorithms to analyze the data of a DT			Set paramet
		6) Control	Ability of the to influence the physical object			
	U	7) Simulation	Simulate the object under different conditions			

Digital Twin in real-time data exchange

Object representation in operation

Automation system operator display and faceplates

Display of real-time information in the context of an object as part of the operator station displays

Displays optimized for fast understanding of the process situation and operational issues

Operator interaction with process equipment through faceplate windows to operate the plant manually

Quick access to detailed real-time information (alarms, trend displays, etc.) to understand the process situation

Automation software and operator display (display element and faceplate) are built into one consistent library

Digital Twin in real-time data exchange

Data model and IoT engineering

Connect analytics to the field data

Available measurements and analytics input requirements must match (property, unit, etc.)

Connectivity parameters and database entries shall automatically be configured based on the device type information of the equipment connected, engineering effort quickly kills the business case

Common data model across platforms is difficult, a common mapping framework shall therefore be promoted as platform interconnectivity

Extend device data model with information form algorithm results, e.g. device health information. Recursively, algorithm inputs need to match available data (e.g. algorithm results)

Digital Twin

Sources for digital information in context

Information aggregation

Live information

- Operational information from ABB Ability[™], through automation system data collection
- Equipment diagnostic information from ABB Ability[™], through asset monitoring infrastructure
- Analytics results (e.g. health analysis, performance analysis) from ABB Ability[™] and analytics applications

Boilerplate information

Product and instance information from factory and installed base information

Production inventory

- Plant information, plant section, installation location
- Equipment function, process context

Digital Twin manifestations along the lifecycle

Visualization of the digital twin features

Variety of tools and tool suites in use

Different tools are used to design different types of products, designing particular aspects may require special tools

System integration requires level of abstraction (plant design tool / simulator does not need finite element component simulation)

Customers want to make use of digital twin advantages in their own production, using the tools they favor for their use case

Tools have their proprietary information models and data management

Plan Build Operate / Maintain

How the equipment reflected depends on the use case

Digital Twin built on data exchange

Flexibility in digital twin representation requires data exchange concept

Standards-based interoperability

Information from across the tool landscape is required for most use cases

- Context information required for proper real-time data analysis
- Production data required for fleet analytics
- Real-time data for product optimization

The tool landscape comprises internal as well as external tools, moving to one common information model and data base is not possible

A flexible digital twin concept requires exchange of information between tools and platforms

Unified data exchange based on established standards

Digital Twin definition for ABB

What is a digital twin? The digital reflection of a physical asset¹

Digital Twin use cases across the lifecycle

Selected use cases

Key challenge: all use cases exchange data through the digital twin

Digital Twin use cases across the product lifecycle

Artefacts and data shared along the value chain

Design	Sell	Manufacture	Build / integrate	Operate	Maintain
<u>றீ க</u>	ALL IN		- × ×		
Equipment	Collaborative		Plant simulation	Optimized	
Production	'as sold'	Transparent		,as tested'	Installed base
instructions	parameters	Manufacturing		information	information
Equipment	'as sold'	'as built'	Virtual	Models for	Models for
models	parameters	parameters	commissioning	optimization	prediction
Analytics		Equipment test	Plant	Advanced	Advanced service
functionality		data	configuration	analytics	delivery
Equipment			Plant		Augmented
models			configuration		Reality
-	Feedbac	ck between all lifecycle stages			L

ABB Customer in the Paper Industry: Digital Twin

13

Digital Twin Directory

Directory referring to all data sources that can provide digital twin information

Directory (1) providing access to information through standards-based data exchange (2)

Slide 14

Collation of correct, consistent, and complete information about a physical asset is **critical** for a digital twin

The digital twin provides an **intuitive interface** to handling situations by envisioning an asset in its context and allowing interaction in the digital space

